科技新闻
我校科学家在国际上首次成功实现高效率长寿命量子存储器
来源:科研部 发布时间:2012-05-22 浏览次数:14

  我校微尺度物质科学国家实验室潘建伟院士及其同事包小辉、赵博等同德国研究人员合作实验实现了具有高读出效率及长存储寿命的高性能量子存储器。该实验在国际上首次将长存储寿命和高读出效率在单个存储器内结合起来,向可升级长程量子通信及可升级光学量子计算迈出了至关重要的一步。该工作于5月20日发表于英国《自然》杂志的子刊《自然•物理学》上。

  

  量子存储器的主要用途是存储单个量子态,从而实现不同量子操作的时间同步。量子存储器是量子中继及大尺度光学量子计算中的关键器件,其核心性能指标是存储寿命和读出效率。目前,量子存储器已经在冷原子系综、热原子系综、单个中性原子、低温固体、金刚石色心等体系中实现。从其核心性能指标来看,冷原子系综的发展水平远优于其他实验体系,最有希望被用于可升级量子通信和光学量子计算。因此,冷原子系综体系一直是国际上量子存储及其应用方面的主要研究热点。到目前为止,作为量子存储器最重要应用之一的量子中继单元也仅在冷原子系综体系内被实现。

  

  在以往研究中,延长存储寿命和提高读出效率这两部分往往是分开进行的,使得存储寿命和读出效率这个两个主要指标没有得到同步提升。具体来讲,在以往实现长寿命量子存储的实验中,尽管存储寿命已经提升至毫秒量级以上,但读出效率却仅为20%左右;在实现高效量子存储的实验中,尽管读出效率已经提升至70%以上,但存储寿命却仅有几百纳秒到几微秒左右。仅单一性能指标较好的量子存储器无法满足量子中继及光学量子计算等的实际应用需求。

  

  在提升存储寿命方面,潘建伟小组在2008年发现原子团内的随机运动带来的自旋波乱相构成了限制毫秒级量子存储的主要物理机制,并通过延长自旋波波长的方式成功地提升存储寿命至1毫秒。在提升读出效率方面,相关研究结果表明,利用光腔增强的方式可以有效地提升读出效率。因此,如何将长寿命量子存储及腔增强量子存储这两部分的方法、技术相结合,是在冷原子系综体系内实现长寿命高效量子存储器的关键。

  

  为了延长自旋波波长,需要采用共线读写的几何结构。为了区分前向散射与背向散射过程,需要采用环形腔共振技术。这两部分相结合带来的一个重要技术难题是:需要实现环形腔与四个模式的同时共振。潘建伟小组通过巧妙的方案设计将这一四重共振的技术难题简化为双重共振,降低了实验难度。经过课题组成员的艰苦努力,并通过一系列其他技术难题的攻克,潘建伟小组最终成功实现了3.2毫秒的存储寿命及73%的读出效率。该成果为目前国际上量子存储综合性能指标最好的实验结果。论文审稿人认为该工作“是朝向可升级量子信息处理方向的重要研究成果”,“开启了利用多个原子系综研究复杂量子信息方案的大门”。

  

  潘建伟小组从2005年开始在冷原子系综量子存储方面开展了系统性研究,迄今为止已经在《自然》、《自然•物理学》、《自然•光子学》和《物理评论快报》四个国际著名学术期刊上发表高水平论文十余篇,是目前国际上在量子存储研究方面居于领先地位的几个主要研究小组之一。